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Abstract

Based on Polish surveillance COVID 19 data-set of 13309 patients
we provide upper and lower age dependent bounds for the rate of severe
progression. To account for observational bias toward severe cases our
estimations are based on secondary household infections. We use those
unbiased bounds to estimate upper and lower bounds on the true number
of cases in Poland as of 1. of July. The method can be applied universally
in all countries with records on severe cases in households and provides
an efficient way to account for the undiagnosed COVID 19 infections.
Furthermore we give a lower bound on the household attack rate and
discuss the close relation between household attack rate, rate of severe
progression and undiagnosed fraction estimations.
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1 Introduction

The COVID-19 pandemic has led to dramatic changes in the everyday life
worldwide. The countries try to find and implement the most appropriate
countermeasures against a further spread. Mounting evidence indicates that
many infected with SARS-CoV-2 show no or only mild symptoms and remain
undetected.29,22,21 Accurate knowledge of the actual number of infected is crucial
for controlling the epidemic.10 Intensive research facilitated early estimates of
key epidemiological characteristics of SARS-CoV-2 infections.34,1 Estimation of
many of these key factors, however, including the Infection Fatality Rate or
transmissibility, depend on the unknown total number of infected.

Efforts to estimate this number have been made both in terms of bio-epidemiological
studies and computational modeling.19,35,24 Many countries are trying to set up
surveys to obtain an estimate for the infection rate of SARS-CoV-2.6, p.12 These
surveys require significant resources that are not always available, especially if
repeated surveys are planned to assess effects of interventions. Moreover, the
results of serological or molecular testing need to be interpreted accounting for
the false positive and false negative rates of the tests. Modelling approach was
used for example by Li et al., combining social media analysis with a networked
dynamic metapopulation model and Bayesian inference to analyze the early
spread within China, estimating that 86% of cases had been undocumented
before travel restrictions were put in place.19 All computational models of
SARS-CoV-2, however, need to make assumptions about disease characteristics.
Thus, the estimation of the actual number of infected cases seems to be more
reliable directly from case data. In a recent article a capture-recapture estimation
for the undetected infections was undertaken by Böhning et al.3

The report by Bi et al. proved contact tracing and surveillance data to be useful
in characterizing epidemiology and transmission of SARS-CoV-2 in China.1

To our knowledge, such detailed case data has not been reported in Europe,
and has not been used for the estimation of the total number of cases. The
approach presented here has similarities to the one developed in parallel by
Hernandez-Suarez et al.14 Both approaches make use of the secondary infections
in households to constitute a severeness-rate-unbiased sample of infected. Our
main objective, however, is to derive upper and lower bounds on the age dependent
rate of severe progression and based on that on the number of SARS-CoV-2 cases.
As severe progression we consider here a hospitalization of at least 14 days or
death. Additionally, we consider for comparison a definition of severe progression
based on a longer than 10 days hospital stay or death. We show that for both
definitions of severeness, the rates grow exponentially with age. Since there is
a close relation between those estimations and the household attack rate we
also provide a lower bound for this. The bounds we obtain are conservative by
construction. We also show how to account for dynamically changing infection
counts. We further analyze Polish surveillance data and give an estimate for the
total number of infected in Poland a of 1st of July 2020. Our results pave the
way for utilizing surveillance data in the early COVID-19 spread for unbiased
estimation of its key characteristics and the unknown total number of infections.
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2 Methods

2.1 Estimating the total cumulative number of infected
with SARS-CoV-2

In the following, we distinguish the first infection detected in each reported
household and other infections, which we will for simplicity call secondary
household infections. The first detected may be subject to some bias, since
they may be diagnosed due to the severity of their disease, different kinds
of ex-ante social activity or other exposure factors. It is plausible that the
infections detected among the remaining household members are unbiased with
regard to clinical progression. That is, the probability of becoming a severe
case depends only on the individual susceptibility of the infected. For the
sake of clarity we consider in this section only the situation when the rate
of severe progression is independent of the characteristics like age or gender.
A straightforward generalization taking dependencies on such parameters into
account is given in the next section.

Formally, let the index of the first detected person within a household h be
given by jh ∈ I = {1, . . . , I}, where I is the set of indices of all known infected
individuals. Accordingly, Nh is the size of a household h. We consider the sets
U∗h = Ũh \ {jh} , h = 1, . . . ,H of individuals susceptible to secondary infections

within households Ũ1, . . . , ŨH . At most |U∗h | = Nh − 1 secondary infection can
occur in household h. The union U∗ =

⋃
h=1,...,H U∗h forms a sample population

of susceptibles with N∗ = |U∗|. Let I∗ denote the cardinality of the set IU∗ ⊂
U∗ of known secondary infected individuals in the households. Let I∗,sev be
the number of severe cases within IU∗ and assume that all severe cases in the
population U∗ are observed. We assume the variable of being a severe case
to be Bernoulli distributed, thus the number of severe cases being Binomial
distributed.

Let T sev be the total number of severe cases, including the first detected in
households. Denote by T ∗ the true total prevalence of infected among U∗, and
T the unknown true total number of SARS-CoV-2 cases in the population.
Assuming that the rate of severe cases among secondary infected individuals is
the same as it is in the set of all infected in the population, we have

T sev

T
=
I∗,sev

T ∗
, (1)

from which we obtain the estimate of the total prevalence as

T =
T sevT ∗

I∗,sev
=

T sev

I∗,sev

T∗

. (2)

Both, T sev and I∗,sev can be assumed to be obtained easily from the existing
records, since severe cases are likely found in a functioning healthcare system.
Contrarily, e.g. due to asymptomatic cases, the number T ∗ may be unknown,
thus the total number of cases T cannot be estimated directly. We hence derive
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upper and lower bounds on T . First, denote the observed severe case rate α by

α :=
I∗,sev

I∗
. (3)

If all infected persons were diagnosed, I∗ = T ∗ and α is the true severe case
rate among the infected. In common case where only a part of the infected is
diagnosed, I∗ is the minimum of secondary infected in the observed households.
Hence α denotes an upper bound for the severe case rate. If only severe cases
are tested then α = 1 is a trivial upper bound. This rate is lower bounded by

β :=
I∗,sev

N∗
, (4)

as N∗ is the maximum number of possible infected in the observed households.
Note that this corresponds to an attack rate of 1. If the true attack rate is
known, a better lower bound can be approximated by dividing β by the attack
rate. Then an conservative maximum likelihood estimate for the upper bound
of the total prevalence of the infection in the population is given by

T̂ β :=
T sev

β
, (5)

and an optimistic one is given by

T̂α :=
T sev

α
. (6)

These estimators are ratio estimators which are generally not unbiased due to
Jensen’s inequality, and bias correction could be applied.31 However, as T sev is
assumed to be known exactly we have COV(T sev, β) = 0 and COV(T sev, α) = 0
and hence T̂ β is first order correct.

A conservative approximation to the confidence interval bounds is obtained by
the Clopper-Pearson interval.4 To obtain an upper bound estimator of infected
we need the one-sided q% lower confidence interval bound of β. This is obtained
by finding the value βq = θ ∈ [0, 1] with P (x ≤ I∗,sev) = q where x ∼
Bin(N∗, θ). Therefore the one-sided q% upper confidence interval bound for
the upper bound of infected is given by

T̂q :=
T sev

βq
. (7)

Analogously, the one-sided q% lower confidence interval bound for the lower
bound estimator of infected can be derived by obtaining the αq = θ with P (x ≥
I∗,sev) = q, where x ∼ Bin(I∗, θ)

T̂q :=
T sev

αq
. (8)
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In the case without observed severe cases in the secondary infections, the rule
of three by Eypasch et al. can be used to approximate a 95% confidence interval
bound instead.8

If the secondary infections in the households are diagnosed precisely this lower
bound will be near the expected number of infected. A gap between officially
recorded infections and the estimated lower bound could stem from a poor
testing of secondary infections. If this can be ruled out, the gap indicates the
expected minimum of additional undiagnosed infections.

2.2 Accounting for unknown household sizes

In Poland and other countries, neither the negative tests nor the household
sizes are recorded. In that case it is necessary and possible to estimate N∗

based on external statistical date. The minimum household size can be deduced
from the number of infected in the household. It is typically possible to obtain
the household size distribution conditioned on demographic characteristics of
the household’s first detected case from census data. Via this information
a distribution of N∗ can be derived, e.g. by bootstrapping, as described in
Appendix A. Therefore, N∗ follows a discrete distribution with probability
function PN∗ .

We extend the idea of the Clopper-Pearson interval by searching for the value
of βq = θ ∈ [0, 1] with q =

∑∞
n∗=1 P (xn∗ ≤ I∗,sev)PN∗(N∗ = n∗) where

xn∗ ∼ Bin(n∗, θ). Since P (xn∗ ≤ I∗,sev) is monotonic in θ for each n∗ also∑∞
n∗=1 P (xn∗ ≤ I∗,sev)PN∗(N∗ = n∗)−q is monotonic as a convex combination.

We then use the bisection method to find the single root of this function.

2.3 Accounting for population strata to estimate of the
total number of infected with SARS-CoV-2

The above approximations could be more efficient, as we assumed that the
rate of severe disease progression among infected individuals in U∗ is the same.
However, it is known that this rate depends on factors like age, sex, and the
comorbidity status.34,11,5,36 When stratifying the population according to these
factors, the between-class variance is removed from the total variance. Hence,
the estimate will be more efficient. We thus adapt the approximation to account
for these strata. Again, we make use of the fact that the secondary infected
in the households constitute an severeness-rate-unbiased sample. Instead of
calculating the rates α and β over all units in the sample, they are calculated
in the classes known to affect the severity of infections.

Let us number the classes of all combination of age, sex, comorbidity values
consecutively with l = 1, . . . , L . Note that the resulting classes, as in ANOVAs,
have to be big enough such that some severe cases S∗,sevl in the l-th class are
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observed. The severe case rates in class l yield

αl := S∗,sevl /I∗l , (9)

βl := S∗,sevl /N∗l . (10)

Therefore, for obtaining an upper bound estimator of the upper bound of
infected we sum up this figure over all classes.

T̂q
post

:=

L∑
l=1

T̂ql
βq
l

. (11)

Accordingly, the estimators T̂q
post

, T̂ 1
2

post
, and T̂ 1

2

post

can be obtained.

2.4 Bound on the household attack rate

As already explained in the introduction there is a close relation between the
household attack rate and the bounds for the rate of severe disease progression
and in turn for the estimation of the undiagnosed fraction of COVID-19 infections.
There are two natural ways to define the household attack rate. The simplest
is just a ratio definition: I∗/N∗ - the number of secondary cases divided by
the mean household size excluding the index case. We refer to this quantity as
the attack ratio (see Table 2) To account for the effect of consecutive infections
within a household we define the household attack rate as the a prior probability
λ of an infected household member to infect a noninfected household member.
We assume that λ does not depend on the household size. In contrast to that is
the attack ratio in a natural way always household size dependent. Under the
further assumption that the attack rate does not depend on age there is a one
to one relation between the attack rate λ and the expected fraction of secondary
household infections G (λ). The value λ∗ corresponds to the attack rate which
would reproduce as expectation for the fraction of secondary infections the value
I∗//N∗ = G (λ∗) . (see supplement C ). Since the true number of secondary
infected is between I∗ and N∗ one can consider λ∗ as a lower uniform bound
on the in-household attack rate. Since the upper and lower bounds on the
severeness rates depend directly on the I∗ respectively N∗ one can associate
λ∗ directly with the upper bound α on the severeness rate and an attack rate
λ = 1 with the lower bound β . Furthermore the relation α ·G (λ∗) = β between
attack rate, rate of severe progression and the G - function holds.

2.5 Adjusting for delayed T sev

So far, we proposed estimators for the number of infected at a certain date using
the T sev from the same day. However, as of the date, the number T sev counts
those that are already a severe case. In a dynamically changing population of
infected, the number of infected that result in being a severe case at a certain
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date is due to infections in the past. Furthermore, the time from infection to
the occurrence of severe progression is also a random variable that has to be
accounted for. In Appendix B we describe how to correct for this time lag. In
our application, there is no need for this methodology at the moment, as the
Polish T sev is stable. Ignoring the reporting delay makes our estimates more
conservative by overestimating the number of infected.

2.6 Collection of surveillance data

The analyzed data was collected as part of routine COVID-19 surveillance in
Poland, which was implemented based on a data collection system functioning
for other notifiable infections. The mandatory reporting was ordered both for
clinical diagnoses of COVID-19 and positive laboratory tests of SARS-CoV-2.
The notifications were sent to the local public health departments, which were
responsible for conducting epidemiological investigation, contact tracing and if
necessary - ordering quarantine.

According to the protocol, all quarantined cases were tested in case of symptoms.
Testing of all people in the quarantine was optionally applied. The results
of the epidemiological investigations were documented in the Epidemiological
Reports Registration System (SRWE). The data was to be updated once the
case outcome was known. However, given the strain on the public health system,
this information could be missing or delayed. The SRWE database includes
basic demographic and clinical information, exposure category, hospitalization
history and use of mechanical ventilation and moreover detailed information on
established links between cases.

2.7 Data pre-processing and estimating crucial quantities
from surveillance data

The full dataset of 14 472 cases was pre-processed. First, we extracted the
case clusters of size at least two with documented household transmission (the
infected households). Only cases for which clear epidemiological links were
registered as household transmission together with their source cases were included.
Cases in social care units and households of minimum 15 inhabitants were
removed from the analysis, as an initial analysis revealed that those were not
representative for the overall population, due to over-represented comorbidities
and severe cases. This filtering left 13 309 cases (summarized in Table 1). In each
infected household, the index case was identified as the one with the earliest date
of diagnosis, since this case was the most likely to trigger the contact tracing.
Other cases in each of the infected households were regarded as secondary cases
and included in the estimation of the severe case rate.

To estimate the unknown number of all individuals infected with SARS-CoV-2,
several crucial quantities need to be projected. First, the total number T sev of
the severe cases in the Polish population was estimated. Here we estimated T sev

once based on a hospitalization of 10 days and more and once of 14 days and
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more.

Second, the maximum number of possible infected in the observed households,
N∗, was estimated by computing the 99th percentile of the bootstrapped household
sizes from the Polish census data. The draw of a household was conditioned
on the age of an index case, minimal household size information and residing
voyvodship.

The most important predictor for the progression of COVID-19 is age, so we
focus on this variable for creating the classes according to Equation (11). We
restrict to the age classification since considering more characteristics would
lead to insignificant case numbers in some classes and, therefore, unreliable
results. In our definition of severe cases are no noticeable differences between
sexes. This is in contrast to the fact that male infected have a higher death rate.
Unfortunately, in the census data no information on comorbidities is available,
such that the corresponding susceptible population cannot be approximated
therefrom.

3 Results

3.1 Surveillance data characteristics

We characterized a total of 13 309 COVID-19 surveillance records (Table 1),
out of which 9 756 (73·3 %) were the index cases and 3 553 (26·7 %) were
the secondary cases. The patients were divided into four age groups, including
a group of 0–39 years old (38·7 % of all records). This wide age group was
formed to reliably estimate per-group severe case rate, as there were no or only
a few severe cases among children. The proportion of females was slightly larger
(52·3%) than of males, and similar in both index cases (52·1%) and secondary
cases (52·9%).

The index cases can be regarded as detected based on their symptoms and the
secondary cases as an severeness-rate-unbiased sample of the population. The
index cases were more often hospitalized (with hospitalization rate 30·8 %) than
the secondary cases (18·6 %). In addition a larger fraction of hospitalization for
longer than 14 days (12·7 %) is observed. On 01/07/2020, the final outcomes
were known for 5 145 out of 13 309 cases, with 430 deceased and 4 715 recovered.
Again, for the index cases, the death fraction was larger than for the secondary
cases, see Table 1.
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Table 1: Demographic and clinical characteristics of analyzed COVID-19
surveillance dataset including all cases, index cases for household transmission
and secondary cases.

All cases Index cases Secondary cases
no. (%) no. (%) no. (%)

Total
13309 (100·0 %) 9756 (73·3 %) 3553 (26·7 %)

Age (years)
0 – 39 5145 (38·7 %) 3338 (34·2 %) 1807 (50·9 %)
40 – 59 5148 (38·7 %) 4130 (42·3 %) 1018 (28·7 %)
60 – 79 2420 (18·1 %) 1831 (18·8 %) 589 (16·5 %)
80+ 596 (4·5 %) 457 (4·7 %) 139 (3·9 %)
Sex
Female 6959 (52·3 %) 5080 (52·1 %) 1879 (52·9 %)
Male 6342 (47·7 %) 4669 (47·9 %) 1673 (47·1 %)
Unknown 8 (0·0 %) 7 (0·0 %) 1 (0·0 %)
Hospitalization
Hospitalized 3663 (27·5 %) 3001 (30·8 %) 662 (18·6 %)
Hospitalized ≥ 10 days 1984 (14·9 %) 1632 (16·7 %) 352 (9·9 %)
Hospitalized ≥ 14 days 1495 (11·2 %) 1238 (12·7 %) 257 (7·2 %)
Final outcome
Deceased 430 (3·2 %) 401 (4·1 %) 29 (0·8 %)
Recovered 4715 (35·4 %) 3424 (35·1 %) 1291 (36·3 %)

3.2 Estimation of the upper and lower bounds of severe
progression rates and for COVID-19 cumulative number
of infections in Poland

To estimate upper and lower bounds for the number of SARS-CoV-2 infections
in Poland, we focused on the secondary case data which can be found in Table 2.

The mean number of susceptibles N∗, i.e. the number of all inhabitants of the
analyzed households, except for the index cases, was estimated using the Polish
census data (Appendix A) to be equal 32 023. The particular numbers as well as
those for the recorded number of infections I∗ can be found in Table 2. We also
report in the same table the household attack ratios for the different age groups.
Although these attack ratios are different for the different age groups they are
still in agreement with the hypothesis that the attack rate for age groups above
40 does not depend on age (see section 3.3).

Based on the obtained quantities of the secondary cases (see Table 2) we obtained
the bounds on the total cumulative number of COVID-19 cases in Poland. We
estimated the lower bound on the severe case rate (β) for the different age groups
using the maximum likelihood estimator (Equation 4).

Figure 1 shows the severity rates and death rates among secondary cases as a
function of the age together with the 98% bootstrap intervals. For the severity
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we used thresholds 10 and 14 days, denoted as β10 and β14, respectively. Death
rate is presented only for people over 60 years, because number of deceased
among secondary cases among younger people was too small to get credible
intervals. To get estimates at this resolution we estimated mortality with logistic
regression model with gender and age, where age was transformed with tail linear
restricted cubic splines. See appendix D for details description. As Figure 1 is
a semilog-plot we can see an overall exponential dependence on the age. The
estimate for β is roughly 10x higher than the estimate for α. Using a model in
which age was a continuous variable allowed to better understand how to select
age groups with similar severity rate and death rate.

This finding is in agreement with the fact that severe cases are more likely
among the elderly patients Verity et al..32

From the maximum likelihood estimate of the lower bound on the severe case
rate β and from the number of severe cases T sev we obtain the maximum
likelihood estimator for the upper bound of the total number of infections T̂ β

(Equation ). We found for an overall upper bound of 432 143 on COVID-19
infections in Poland using a 10 days threshold for the severe cases. The 99
percentile of this upper bound estimator is 555 787. Using the 14 days threshold
the upper bound is 479 048 with a 99 percentile of 663 084, compare Table 3 in
the Appendix.

The upper bound on the overall severe case rate (α) for the different age
groups, was determined using the maximum likelihood estimator (Equation 3
). Similarly to the lower bound, the young population (0–39 year old) had the
smallest upper bound on severe case rate (4·43%), and the oldest age group
(more than 80 years old) had the largest upper bound (34·53%) compare (Table
2). Again, as smooth estimate for the lower bound, the upper bound on the
severe case rate is presented in Figure 1 and follows an exponential trend with
growing age. The lower bound estimate for the total number of COVID-19 cases
in Poland ( T̂α) is 49 886, while the 1 percentile of the lower bound was equal
to 40 571 for the 10 days threshold and 54 355 with a 99-percentile of 42 005
for the 14 days threshold, see Table 3.

Upper bound and lower bound estimates of infected cases in Poland presented
in Table 3 are calculated in two steps. The first step is to obtain estimates based
on group cohorts by dividing severe case numbers of all case data (both index
patients and secondary cases) by the β (respectively α). The final step is to scale
up database level estimates to national level by multiplying database estimates
by a normalization factor which is a number of cases officially detected in Poland
as of July 1st divided by the number of cases in the database (34 775

13 309 = 2·613).
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Table 2: Observed and estimated figures for the COVID-19 pandemic in Poland
based on the available database (as of 01/07/2020)

Total 0–39 40–59 60–79 80+

Cases in the database 13309 5145 5148 2420 596
(100·0 %) (38·7 %) (38·7 %) (18·2 %) (4·5 %)

Households 9773

Statistics of secondary case data

Susceptibles (N∗) 32023 19221 7801 4137 865
(100·0 %) (60·0 %) (24·4 %) (12·9 %) (2·7 %)

Number of infected (I∗) 3553 1807 1018 589 139
(100·0 %) (50·9 %) (28·7 %) (16·6 %) (3·9 %)

Minimal attack ratio 11·0 % 9·3 % 12·9 % 14·1 % 15·9 %
Deceased 29 0 4 13 12

(0·8 %) (0·0 %) (0·1 %) (0·4 %) (0·3 %)
Hospitalized≥10 days 338 80 103 119 36
and not deceased (9·5 %) (2·3 %) (2·9 %) (3·3 %) (1·0 %)
Hospitalized≥14 days 248 45 80 90 33
and not deceased (7·0 %) (1·3 %) (2·3 %) (2·5 %) (0·9 %)
Severe cases (Isev10 ) 367 80 107 132 48

(10·3 %) (2·3 %) (3·0 %) (3·7 %) (1·4 %)
Severe cases (Isev14 ) 277 45 84 103 45

(7·8 %) (1·3 %) (2·4 %) (2·9 %) (1·3 %)

Statistics of all case data

Deceased 430 10 48 233 139
(3·2 %) (0·1 %) (0·4 %) (1·8 %) (1·0 %)

Hospitalized≥10 days 1809 329 645 643 192
and not deceased (13·6 %) (2·5 %) (4·8 %) (4·8 %) (1·4 %)
Hospitalized≥14 days 1359 222 480 504 153
and not deceased (10·2 %) (1·7 %) (3·6 %) (3·8 %) (1·1 %)
Severe cases (T sev

10 ) 2239 339 693 876 331
(16·8 %) (2·5 %) (5·2 %) (6·6 %) (2·5 %)

Severe cases (T sev
14 ) 1789 232 528 737 292

(13·4 %) (1·7 %) (4·0 %) (5·5 %) (2·2 %)

Lower and upper bound estimates using 10 days threshold

Lower bound on – 0·42 % 1·37 % 3·19 % 5·55 %
severe case rate (β)
β1% – 0·32 % 1·10 % 2·56 % 3·85 %

Upper bound on – 4·43 % 10·52 % 22·45 % 34·53 %
severe case rate (α)
α99% – 5·59 % 12·81 % 26·60 % 43·75 %

Lower and upper bound estimates using 14 days threshold

Lower bound on – 0·23 % 1·08 % 2·49 % 5·20 %
severe case rate (β)
β1% – 0·16 % 0·83 % 1·93 % 3·57 %

Upper bound on – 2·49 % 8·26 % 17·52 % 32·37 %
severe case rate (α)
α99% – 3·40 % 10·37 % 21·33 % 41·56 %
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Severity rate (log scale) for secondary household infections
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Figure 1: Partial dependence profiles for lower (beta) and upper (alpha) bound
for the severity rate and death rate estimated with a linear tail-restricted cubic
spline function. Filled regions show 98% bootstrap intervals. The subscript
stands for: 10 - severity calculated for 10 days, 14 - severity calculated for 14
days, D - death rate.

Table 3: Estimates for the cumulative number of infections in Poland as of July
1st 2020

Total 0–39 40–59 60–79 80+
Detected cases in Poland 34 775

Lower and upper bound estimates using 10 days threshold

Upper bound estimate T̂ β 432 143 212 819 132 016 71 730 15 580
99-percentile of the upper bound 555 787 279 086 164 760 89 449 22 493

Lower bound estimate T̂α 49 886 19 975 17 211 10 196 2 505
1-percentile of the lower bound 40 571 15 858 14 133 8 605 1 977

Lower and upper bound estimates using 14 days threshold

Upper bound estimate T̂ β 479 048 258 926 128 124 77 339 14 661
99-percentile of the upper bound 663 084 376 563 165 291 99 845 21 387

Lower bound estimate T̂α 54 355 24 302 16 704 10 994 2 357
1-percentile of the lower bound 42 005 17 838 13 303 9 029 1 836

3.3 Lower bound on household attack rate

We estimate for our patient cohort the household attack rate (lower bound) as
λ∗ = 0.083. This value corresponds to the attack rate which would reproduce
as expectation for the secondary infections the value I∗

N∗ = G (λ∗) . In Table
4 we give the 99% confidence intervals for the observed numbers of secondary
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Table 4: Range of the 0.99 age-group specific confidence intervals for the number
of infected given N∗ = 32023 and λ∗ = 0.083

0-19 20-39 40-59 60-79 80+
Lower bound 1000 1081 785 404 73
Upper bound 1202 1283 950 520 125

Mean 1101.94 1179.37 866.66 460.36 98.16
Secondary infected 751 1053 1017 588 139

Table 5: Range of the 0.99 age-group specific confidence intervals for the number
of infected given N∗ = 32023 and λ = 0.095

0-19 20-39 40-59 60-79 80+
Lower bound 1208 1296 943 485 89
Upper bound 1434 1525 1121 612 146

Mean 1320.52 1408.98 1030.72 546.67 116.83
Secondary infected 751 1053 1017 588 139

infections in the corresponding age groups used for the estimation of the severeness
rate.

Since the true number of secondary infected is between I∗ and N∗ one can
consider λ∗ as a lower uniform bound on the in-household attack rate. Since
the upper and lower bounds on the severeness rates depend directly on the I∗

respectively N∗ one can associate λ∗ directly with the upper bound α on the
severeness rate and an attack rate λ = 1 with the lower bound β . Furthermore
the relation α · G (λ∗) = β holds. As can be seen from Table 1 we have in
the age cohort 0 − 39 a smaller number of observed secondary cases than the
lower bound of the 99% confidence interval for the expected number and for the
age cohorts above 50 years the true numbers are above the confidence intervals.
Hence we would reject the hypothesis that the attack rate does not depend on
age if we could be sure that the observed number of cases I∗ is really the true
number of cases or is a least not biased according to age . The cumulative
empirical distribution function for secondary household infections as a function
of age (see Figure 7) strongly indicates that above age 30 we do not have a
relevant bias of the in household attack rate with respect to age.

To illustrate this we give in Table 5 upper and lower bounds on the number
of infected given the same number of susceptibles N∗ = 32023 but instead of
estimated λ∗ we use a higher λ = 0.095 that was chosen as the minimal attack
rate for which the number of observed secondary infected in age groups 40−59,
60− 79 and 80+ fall into the confidence intervals corresponding to this λ value.

4 Discussion

We use a new method for the estimation of the unknown total number of
SARS-CoV-2 infections, including diagnosed and undiagnosed cases. The
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method is quickly applicable to data, which is usually collected by the routine
surveillance systems, i.e. the residence address of the case and the indication of
severity of the disease course. In contrast to approaches based on seroprevalence
research, it does not require design and performing of a population study.
Compared to model-based approaches, it is data-based and introduces only
minimal assumptions. Most of the recommendations as well as the clinical
practice include testing of all cases showing serious symptoms of COVID-19.
As an example, testing recommendations issued by the European Centre for
Disease Control and Prevention underline the necessity of the testing of all cases
with severe acute respiratory infections (SARI) ECDC.7 Similar guidelines were
issued by the WHO Organization et al.26 It is likely that such testing approaches
are widely adopted and our proposed method is applicable in many countries.

The idea that severe cases or deaths are likely to be nearly completely diagnosed
and registered was used by other authors, who also calibrate prediction models
based on observed deaths rather than on the number of diagnosesFlaxman et al.9

These approaches were limited by the lack of precise information on the expected
infection fatality rate or, more generally, the expected fraction of the severe
cases. It is to expect that these rates differ across countries, but the available
data originates only from a limited number of studies. We estimate lower and
upper bounds of this fraction based on household data. The provided upper
bound corresponds to the situation, in which the secondary household attack
rate is 100%. Recent studies show lower attack rates, e.g. approximately 17·1%
in Guangzhou, China Jing et al.15 Thus the real number is likely lower than the
estimated upper bound. The lower bound on the other hand assumes that all
cases in the household are diagnosed, which is unrealistic. Even if all cases in
the household are tested as part a of contact tracing procedure, due to duration
of viral shedding, not all cases could be identified. In case of asymptomatic or
mild cases the viral shedding tends to last for a shorter time Liu et al.20 Hence
they might be already negative when the first case in the household is diagnosed.
Knowledge of the local practice in terms of testing in the households of identified
cases helps to interpret the lower bound. Comprehensive testing implies that the
true fraction may be close to the lower bound and a smaller difference between
upper and lower bound is expected in this case. The methods were applied to
surveillance data from Poland. The estimated upper bound (99% for the upper
bound) is 663 084, which corresponds to 1·8% of the total population in Poland.

This indicates a low level of population immunity, insufficient to ensure population
protection, even considering that lasting immunity follows the disease. This is
in line with sero-epidemiological studies performed in other European countries
up to date. Even in countries and regions heavily affected by the epidemic the
levels granting heard immunity were not met. For example the sero-prevalence
in Spain was estimated at 5% varying regionally from 1·1% to 11·3% Kenyon,16

at 7·3% in Stockholm in April30 and it reached 28% in the most affected
Italian region – Lombardy Percivalle et al..27 To compare these results with
the thresholds for heard immunity, the later were initially estimated at 60%
to 70%, see Kwok et al.17 and even if these may be lower in non-homogenious
populations Gomes et al.12 most of regions still are below these estimates.

Our estimate, below 1·8% for Poland is on the lower side as compared to
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prevalence estimates coming from seroprevalence studies in other countries.
We note however that the cumulative number of cases in Poland remains low,
approximately 900 per 1 million populations. In a country with similar rate,
Czechia, the seroprevalence in population sample was below 1%, and below
1·5% in Prague.18 Up to date there is no published seroprevalence results in
Poland. A study in Cracow reports 2% seroprevalence in this city [personal
communication K. Pyrć]. This is not contradictory to our results as typically
the infection rates are higher in big cities, as confirmed also by above mentioned
studies in Spain and Czechia.

The approach also has several limitations. The methods largely depend on the
definition of the severe case and how accurately the severe cases are recorded in
the data. However, locally a definition may be chosen that ensures that severe
cases are accurately diagnosed and registered. Next, the surveillance data may
suffer from data quality issues such as underreporting or incomplete reporting.
Tailored statistical approaches may be needed to pre-process the surveillance
data. We also show that it is preferable to register the size of the household
of the infected cases. However we are also able to use additional data sources
(census data) to supply this information.

In conclusion, the method is easily applicable using surveillance data and provides
useful information on the total number of infections and the undiagnosed fraction.
In addition, it could be used to continuously monitor the effectiveness of the
testing strategy and the proportion of individuals who have already passed
the infection. In the example of Poland we show that only a minor part of
individuals were already infected and recovered, which is far from the herd
immunity thresholds.
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Powszechny Ludności i Mieszkań 2011. Uwagi metodyczne i analityczne.
2014. url: https://stat.gov.pl/download/gfx/portalinformacyjny
/pl/defaultaktualnosci/5670/4/1/1/uwagi_metodyczne_i_anality

czne.pdf (cit. on p. 18).

[34] Zunyou Wu and Jennifer M. McGoogan. “Characteristics of and important
lessons from the coronavirus disease 2019 (COVID-19) outbreak in China:
summary of a report of 72 314 cases from the Chinese Center for Disease
Control and Prevention”. In: Jama 323.13 (2020), pp. 1239–1242 (cit. on
pp. 2, 5).

[35] Yang Yu, Yu-Ren Liu, Fan-Ming Luo, et al. “COVID-19 Asymptomatic
Infection Estimation”. In: medRxiv (2020) (cit. on p. 2).

[36] Fei Zhou, Ting Yu, Ronghui Du, et al. “Clinical course and risk factors
for mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study”. In: The lancet (2020) (cit. on p. 5).

6 Appendix

A Estimation of the susceptible population size
N ∗ under unknown household sizes

Unfortunately, the information on the household size has not been recorded in
Poland and thus has to be estimated. For the estimation we used the data from
2011 Census.25 A representative study was done on a random sample of approx.
20% (approx. 2 744 000) households in Poland, out of the total number of 13·5
million registered households. The data was successfully collected directly from
inhabitants of 2 272 711 households.33

Based on the data described above, we estimate the average household size to
be 3·35. A (1 − %)100% confidence interval can be obtained using Hoeffding’s

concentration inequality in the form 3·35±q%, where q% solves 2 exp
{
−2q2
nC2

}
= %

with C = 56 being the maximum household size. In particular, a 99% confidence
interval is 3·35± 0·0605, and a 95% confidence interval is 3·35± 0·0505.
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In Figure 2 we give the distribution of mean household size given the age of a
randomly chosen individual along with the standard deviation in the population
of Poland.

Figure 2: Mean and standard deviation of household size given the age of a
randomly chosen individual from the population of Poland.

A.1 Estimation of household size

For each index case, we sampled a household h from “National Census of
Population and Housing 2011” inhabited by a person of the same age a as
the index case and calculated the number of household members within each
considered age group g in G = {0 − 39, 40 − 59, 60 − 79, 80 + years old}. For
each household h we hence obtained |U∗h | as the sum of the number of household
members in all age groups

∑
g∈G |U∗h,g|. This bootstrapping procedure was

repeated 10000 times. In each iteration w of the procedure, after all index cases
had been processed, the numbers of household members in each age group were
totalled, N∗g,w =

∑
h |U∗h,g|. We estimate the size of the susceptible population

in each age group N∗g as the 99th percentile of all obtained N∗g,w, and the total
size of the susceptible population as N∗ =

∑
g∈GN

∗
g .
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A.2 Estimation of the household size with partial information
on the household size

The above procedure yields mean household sizes when no household size information
is known, i.e. under the assumption that for each h the total household size
|U∗h | + 1 is at least 1. However, in cases when other household members, but
possibly not all of them, were infected and these links were reported in the
SRWE data, we are able to determine the minimal size of these particular
households. Based on the SRWE data, we calculated a minimal household
size k + 1 for each index case as the number of all infected people living in the
same household. Thus, for an index case of age a and known minimal household
size k+ 1 we sampled only from households satisfying both the age and the size
condition. For people younger than 18 years old, who legally cannot live alone,
we set max(k + 1, 2).

A.3 Estimation of the household size including spatial data

In the SRWE database, the exact address of the residence of each case is
reported. Since household size distributions may vary across voyvodships and,
moreover, the distribution of household sizes at the voyvodeship level is available
in the 2011 Census data, we included the voyvodship information in the bootstrap
procedure. Thus, for each index case, in addition to the age and the minimal
household size conditions, we conditioned the household sample on a voyvodship.
The only exception from this condition was made for Podlaskie voyvodship, for
which very few households are provided in the 2011 Census data. For this
particular voyvodship we used the household size distribution of Poland.

Figure 3 illustrates the differences in the distributions of the number of susceptibles
in each age group obtained by the three bootstrapping procedures mentioned
above. The procedure that served as a basis for the results presented in Table 2
and Table 3, was the third procedure that takes into account both the minimal
household size and spatial data, due to its richest usage of available data.
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Figure 3: Distribution of the number of susceptibles in each age group based on
the results of the bootstrapping procedure.

In Figure 4 we compare empirical cumulative distribution functions (ECDF)
of age within reported index cases and secondary case to the ECDF of age
within the general population of Poland. The index cases population is clearly
older than the general population, whereas the distribution of age of secondary
cases resembles the distribution of age in the general population. Further, the
distribution of age within susceptible population, obtained from the boostrapping
procedure, indicates that this population is younger than the general population.
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Figure 4: Empirical cumulative distribution functions of age in the population
of secondary household infected (based on the SRWE data), in the population
generated by the bootstrapping procedure (based on 2011 Census data), in the
general population of Poland (based on official 06.2019 statistics), and of index
cases (from SRWE data). All four ECDFs illustrate the cumulative probability
of age among people younger than 80 years old.

In Figure 5, the frequencies of household sizes of an infected population are
given. In case the source of infection is known and the circumstances are
classified as “Household contact” we make the assumption that all household
members were infected and use this assumption to calculate their household
size. In case the source of infection is from the outside of the household or is
unknown, then we take the average household size given the age of a person.

22



Figure 5: ECDF of household sizes (with less than 15 inhabitants) in the general
population of Poland and within the population of secondary cases. In case the
source of infection is known and the circumstances are classified as “Household
contact” we make the assumption that all household members were infected
and use this assumption to calculate their household size. In case the source of
infection is from the outside of the household or is unknown, then we take the
average household size given the age of a person.

B Adjusting for delayed T sev

Let p(k) be the probability of developing a severe progression after k days after
infection, conditionally on developing the severe progression at some point in
time. Denote as before by α̂ the severe case rate and let ϕ(t) be the cumulative
number of severe cases discovered at day t. Further, we denote by δ(t) be the
number of new severe cases manifesting themselves at day t, and by ∆(t) the
number of all new infections (not only the discovered) at day t. For the following
considerations we assume that the daily reported number of severe progressions
is reported without delay. However, if there is a delay in reporting, then the
estimated number of infected have to be shifted backwards by this delay.

In particular, for the k-th day the amount of new severe cases among the
previously infected is

δ(k) =

k∑
s=1

β(k)
s , (12)

where the β
(k)
s are realizations from the Binomial distribution given by B ( ∆(s),

α̂p(k − s) ). If the immunity is not complete and a second infection is possible,
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these probabilities may change for the second infection. Then the probability of
developing a severe progression in the second infection may be lower, and the
estimated figures will tend to underestimate the total amount of infected.

At day s, ∆(s) persons get infected. The probability to exhibit a severe progression
at day k conditionally on developing a severe progression at some point is
p(k− s). In expectation the number of severe cases at day t, starting at day T0,
is then given by

Eδ(t) = α̂
∑

s≤t,s>T0

p(t− s)∆(s) (13)

Recall that δ(k) is a sum of independent Bernoulli random variables. Define
µ := Eδ(k). By applying the Chernoff bound (see e.g. Theorems 4.4 and 4.5 in
Mitzenmacher and Upfal23), we get for λ > 0

P {δ(k) ≥ (1 + λ)µ} ≤ exp

{
−µλ

2

3

}
, (14)

and

P {δ(k) ≤ (1− λ)µ} ≤ exp

{
−µλ

2

2

}
. (15)

For a single realization r of δ(k) we get

P {r ≥ (1 + λ)µ} ≤ exp

{
−µλ

2

3

}
, (16)

and

P {r ≥ (1− λ)µ} ≤ exp

{
−µλ

2

2

}
. (17)

For obtaining a lower %-significant estimate on µ from (16), we take λ = r/µ−1,
that is r = (1 + λ)µ, and find the solution to the constrained optimization
problem

minµ ≥ 0 : exp

{
−
µ( rµ − 1)2

3

}
≥ % (18)

The solution to (18) is the smaller root of the equation with unknown µ

µ2 − 2rµ− 3µ| ln %|+ r2 = 0, (19)

so µ = 1
2

(
2r + 3| ln %| −

√
12r| ln %|+ 9 ln2 %

)
.

Similarly, by taking λ = 1 − r/µ in (17) we can find an upper %-significant
estimate on µ by solving the constrained optimization problem

maxµ ≥ r : exp

{
−
µ( rµ − 1)2

2

}
≥ %. (20)
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The solution to (20) is the greater root of

µ2 − 2rµ− 2µ| ln %|+ r2 = 0, (21)

hence so µ = r + | ln %|+
√

2r| ln %|+ ln2 %.

Take now % = 1− 0·025
(T−T0)

, and let rk be the realizations of δ(k) that we observe.

Set

µuk = rk + | ln %|+
√

2rk| ln %|+ ln2 %, (22)

and

µ`k =
1

2

(
2rk + 3| ln %| −

√
12rk| ln %|+ 9 ln2 %

)
. (23)

Then by (12) and (13)

P
{
µuk ≤ rk + | ln %|+

√
2rk| ln %|+ ln2 % for all k = T0 + 1, . . . , T

}
≥ 1−

T∑
k=T0+1

P
{
µuk ≥ rk + | ln %|+

√
2rk| ln %|+ ln2 %

}
≥
(

(1− (T − T0)
0·025

(T − T0)

)
= 0·975. (24)

Hence µuk , k = T0, . . . , T defined by (22) give us upper 0·025-significant estimates
for ∆(k), k = T0, . . . , T , in the sense that, assuming Eδ(k) = µk,

P {δ(k) ≤ rk for all k = T0 + 1, . . . , T} ≤ 0·05. (25)

Similarly, µ`k, k = T0, . . . , T defined by (23) provide lower 0·025-significant
estimates for ∆(k), k = T0, . . . , T .

We can rewrite (13) as

p(1)∆(T0) = Eδ(T0 + 1)

p(2)∆(T0) + p(1)∆(T0 + 1) = Eδ(T0 + 2)

...
...

. . .
...

p(T − T0)∆(T0) + p(T − T0 − 1)∆(T0 + 1) + · · · + p(1)∆(T − 1) = Eδ(T )

We see that the coefficient matrix is a triangular matrix and thus the system
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can be solved by forward substitution. In particular,

∆(T0) =
Eδ(T0 + 1)

p(1)

∆(T0 + 1) =
Eδ(T0 + 2)− p(2)∆(T0)

p(1)
(26)

. . .

∆(T − 1) =

Eδ(T )−
T−T0−2∑
i=0

p(T − T0 − i)∆(T0 + i)

p(1)
.

Denote by fT0
, fT0+1, . . . , fT0+T−1 the solutions to (26) as linear functions of

Eδ(T0 + 1), Eδ(T0 + 2), . . . , Eδ(T ).

The lower and upper boundaries of a 0·05-significant confidence interval for
∆(t), t ∈ {T0, T0 + 1, . . . } are given by

min
{
ft(µT0+1, . . . , µT )

∣∣µs ∈ {µ`s, µus}, s = T0 + 1, . . . , T
}
, (27)

max
{
ft(µT0+1, . . . , µT )

∣∣µs ∈ {µ`s, µus}, s = T0 + 1, . . . , T
}
. (28)

Similarly, the cumulative number of infected I(T) =
∑

T0≤s≤t
∆(s) can also be

expressed as a linear function F of Eδ(T0 + 1), Eδ(T0 + 2), . . . , Eδ(T ), hence
the boundaries of a 0.05-significant confidence interval are

min
{
F (µT0+1, . . . , µT )

∣∣µs ∈ {µ`s, µus}, s = T0 + 1, . . . , T
}
, (29)

max
{
F (µT0+1, . . . , µT )

∣∣µs ∈ {µ`s, µus}, s = T0 + 1, . . . , T
}
. (30)

Remark. From the numerical point of view the method outlined here works
well if 1 is the mode of the distribution p, or at least if p(1) is close to the
max{p(k)}. Otherwise the elements of the inverse matrix may take very large
values, and dependence of ∆ on δ is very sensitive, making the approach not
numerically stable. Additionally, if the aim is to obtain a confidence interval
only for the total number of infected I(T), a narrower confidence interval can
be designed.

C Estimating lower bounds on the in-household
attack rate λ

We describe here in detail how to get a lower bound on the attack rate within
a given age cohort. Assume we have n index patients enumerated from 1 to

26



n. For the attack rate we will use as index patients the first infected patient
in a household , that is the patient whose source of infection was outside the
household or the patient where the source is not known. We assume a constant
attack rate λ ∈ [0, 1] which is defined as the a priori probability of an index
patient to infect a given member of the household . Let Hi be the sampled
household of index patient i and let the random variable hi be the number of
susceptibles in household Hi. We first discuss the situation when λ does not
depend on the age of the index patient nor on the age of the suceptibles in Hi.
To link the attack rate with the observed number of cases in the susceptible
secondary household population we need first to estimate the expected number
of infected in a household of given size. Let µk (λ) be expected number of
infected in a household with susceptible size k (not counting the index patient).
Trivially we have µk (λ) ≥ λk. Let Yi be the random variable of the actual
(unknown) number of secondary infections in household Hi. We consider only
households up to size 15. Then the actual number I of infected in the susceptible
population is given by

I =
∑
i

Yi (31)

where the random variables Yi are independent but not identical distributed .
Due to the concentration properties of sums of bounded independent random
variables, I is concentrated around the expectation EI. Since the household-size
distribution depends on age we have to group the index patients into age classes
[a] corresponding to the age cohort a . Clearly

I =
∑
a

∑
i∈[a]

Yi. (32)

Let further pk (a) be the probability that an index patient from age class [a]
lives in a household of size k + 1. For i ∈ [a] we have

EYi =
∑
k≥1

µk (λ) pk (a) =def µ̄ (a) (33)

where µ̄ (a) is the expected number of secondary household infected for index
patients in a age class [a]. We have finally

EI =
∑
a

|[a]| µ̄ (a) , (34)

where |[a]| is the number of patients in the cohort [a]. Let further N∗ be the
total number of the susceptible population, that is

N∗ =
∑
i

hi (35)

and
EN∗ =

∑
a

|[a]|
∑
k≥1

kpk (a) =
∑
a

|[a]| h̄ (a) (36)

where h̄ (a) is the expected secondary household-size of an index patient in class
|[a]| . By the law of large numbers we have for large numbers of index patients

I

N∗
∼ EI

EN∗
=def G (λ) (37)
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Figure 6: Fraction of infected within secondary household members

(we can make the errors explicitly by using concentration inequalities). Clearly
G (λ) - the fraction of true case in the secondary household population - is a
continuous and strictly monotone increasing function in λ and has an inverse.
In Figure 6 we give the obtained G (λ) for λ ∈ [0, 0·25].

Given the observed number of secondary household infections Î we get under
the assumption that Î is the true number of cases as an estimator for the attack
rate

λ̂ = G−1

(
Î

EN∗

)
. (38)

Furthermore λ̂ defines a lower bound on the true attack rate since we assumed
that Î is the the true number of cases.

Note that there is a close connection to the upper and lower bounds on the
severeness rate estimated in the main text. The lower bound severeness probabilities
(β ) were obtained by assuming that all of the susceptible population N∗

is infected, which corresponds to the case λ = 1. The upper bound on the
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severeness rate was obtained by assuming that the observed number of cases Î
is the true number of cases, hence this corresponds to the attack rate λ̂.

On the other side, if the true value of λ ∈
[
λ̂, 1
]

of the attack rate would be

known and is independent of age we could estimate the severeness rate τ (a) in
age group a as follows. The number of cases I (a) in age group a is given by

I (a) =
∑
i

Yi (a) (39)

where Yi (a) is the number of infected in households Hi in age group a. Let
νk (a, b) be the expected fraction of secondary household members of age class
a in an household size k of an index patient i from age class b. Then

EI (a) =
∑
b

|[b]|
∑
k≥1

µk (λ) νk (a, b) pk (b) . (40)

Note that the age classes for a and b in the above formulas need not to be the
same (usually we take the age class b for the index patients to consist of a single
year, whereas the a cohorts are taken to be much larger). Again by the law of

large numbers I(a)
EI(a) ∼ 1 and the maximum likelihood severeness rate based on

an observed number Îsev (a) of severe cases in age class a reads as

τ̂ (a) =
Îsev (a)

EI (a)
. (41)

The numbers νk (a, b) can be computed with arbitrary precision by bootstrapping
from the census household population.

The adaptation of the above consideration to the case of age dependent attack
rates is straightforward.

Age dependent attack rates

We first discuss the situation when the attack rate depends on the age of
the susceptible but not on the age of the index patient (that is the source
of the infection in the household). Let K be a partition the age classes of
the the susceptibles into k age cohorts. For the index patients we assume
usually a finer partition A into age classes (usually one class per year). Let

λ = (λ1, λ2..., λk) ∈ [0, 1]
k

be the vector of attack rates for the different age

cohorts from K. Let µl (λ, a) =
(
µ
(1)
l (λ, a) , ..., µ

(k)
l (λ, a)

)
be the vector of

expectations of the number of infected in the different age classes in a household
of size l + 1 conditioned that the index patient is of class a. Note that the
expectation has to be taken over all possible age compositions of the households.

Let finally for each index patient i, Yi =
(
Y

(1)
i , ...Y

(k)
i

)
be the vector of the

numbers of infected household-members in Hi in the corresponding age classes
from K and let I = (I1, ..., Ik) be the vector of numbers of infected in the
different age classes in the whole susceptible population N∗. We get in complete
analogy with the age independent case

I =

n∑
i=1

Yi =
∑
a∈A

∑
i∈[a]

Yi (42)
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and for the expectation

EI =
∑
a∈A
|[a]|

∑
l≥1

µl (λ, a) pl (a) (43)

where pl (a) as before is the probability that an index patient of age a lives in
a household of size l + 1. Contrary to the age independent case, µl (λ, a) might
depend on the age a of the index patient since the age composition of households
matters here. Again by the multivariate law of large numbers we have

I

N∗
∼ EI

EN∗
=def G (λ) (44)

where G : [0, 1]
k → [0, 1]

k
is a strictly monotone increasing mapping and hence

as a well defined inverse. Given the vector Î =
(
Î1, ..., Îk

)
of observed infected in

the different age groups and in the susceptible population. We get the estimation

λ̂ = G−1

(
Î

EN∗

)
(45)

for the attack rates in the age groups from K. Instead of the normalization
by EN∗ one could also scale the different components of I respectively Î by
the expected size EN∗ (b) of the susceptible population in an age cohort b.
This might look from an epidemiological point of view more natural but would
only change the definition and form of G and give in the end the same (at least

asymptotically) estimator λ̂. Note that there is no easy analytic way to compute
the values of µl (λ, a) . Here one has to rely on numerical approximations for
instance by Monte Carlo simulations. The case when the attack rate depends
also on the age of an index patient is more complicated and will be discussed
elsewhere.

D Smooth version of the severity rate estimator

In equation 3 the rate α is defined as the expected rate of severe infection among
household secondary infections. This rate may be dependent on some observed
characteristics of infected persons, like age, gender or comorbidities. Let α(x)
be an expected severeness rate for an individual with observed characteristics
x. For simplicity, we have considered only the most important characteristic i.e.
age, but the approach works also for more general settings.

Let Nx be the number of observed secondary infected individuals with observed
characteristic x. Then assuming that these infections are independent then the
number of observed severe cases Ix is a binomial random variable

Ix ∼ Bin(Nx, α(x))

If groupsNx are large enough then we can estimate α(x) in each group independently
with the procedure described in equation 2. Such estimates for four age groups
are presented for example in Table 2.
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Figure 7: Empirical cumulative distribution functions of true secondary infected
vs simulated secondary infected
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If we want to have a continuous form of the function α(x) then we can treat
this problem in the same way as in the classification problem. We assumed that
α(x) can be approximated by a family of functions parameterized with coefficient
θΘ for which we can write down the likelihood function and therefore we can
construct maximum likelihood estimator. A simple logistic regression with a
linear link may be too rigid. We compared the gradient boosting approach and
logistic regression with restricted cubic splines [13]. Both leads to similar results
thus only the one with splines is presented below.

For age, we used four knots places in percentiles 5, 35, 65, 95. This corresponds
to age breaks at 14, 40, 56, 83. Between knots, the function α(x) is approximated
as cubic polynomial while outside knots it is approximated as a linear function.
Additional restrictions are put to get smooth approximation in knots.

The exact formula of three cubic polynomials is hard to read so to visualise this
relation we used the Partial Dependence profiles implemented in the DALEX
[2] library for R [28]. The relation is presented in Figure 1. Note that due to

the behaviour of ˆα(x) and ˆβ(x), the log-linear axes are used.

The procedure for the β(x) is similar, with the only difference that instead of
the number of observed infected cases Nx, we use a census-based estimation of
the size of the susceptible population size with characteristics x, see appendix
A for details.

The 98% pointwise confidence intervals presented in 1 is obtained with the
bootstrap procedure based on 1000 bootstrap samples. In each bootstrap sample,
the households were sampled with replacement and used for estimation of α(x)
and β(x).

These results can be reproduced with scripts available at the https://github

.com/MOCOS-COVID19/dark-figure.
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